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ABSTRACT. In this paper we give a sufficient and necessary condition for a Radon-Nikod́ym
compact space to be Eberlein compact in terms of a separable fibreconnecting weak-* and norm
approximation.

INTRODUCTION

A compact topological space is called Eberlein compact if itis homeomorphic to a weakly
compact subset of some Banach space and it is called Radon-Nikodým compact if it is homeo-
morphic to a weak-* compact subset of the dual of an Asplund space. By the factorization result
of [1], every Eberlein compact space is homeomorphic to a weakly compact subset of a reflexive
Banach space, therefore an Eberlein compact is a Radon-Nikodým compact space. However,
these two classes are different; indeed any scattered compact space is Radon-Nikodým and any
separable, non metrizable scattered compact space cannot be an Eberlein compact since for the
class of Eberlein compacta, separability and metrizability are equivalent properties.

The class of Radon-Nikodým compacta has been investigated by several authors [14, 15, 19,
22] after the systematic study made by I. Namioka in [14]. In that paper it is asked:

Problem 4: Find conditions for a Radon-Nikodým compact space to be Eberlein compact.

An answer to this problem was given by [19] and [22] showing that a necessary and sufficient
condition for a Radon-Nikod́ym compact space to be an Eberlein compact is that it is a Corson
compact. Recall that a compact space is called Corson compact if it is homeomorphic to a subset
of theΣ-product space

Σ(Γ) = {x ∈ [−1, 1]Γ : {γ ∈ Γ : x(γ) 6= 0} is countable}.

It is our aim here to give another necessary and sufficient condition on a Radon-Nikod́ym
compact space for it to be Eberlein compact.

If a Radon-Nikod́ym compact lives in a separable dual, it is metrizable and so it is Eberlein
compact. In the non separable case, we know that it lives in a dual of an Asplund space where
we can define a projectional resolution of the identity, [6].These projections are not, in general,
weak-* continuous, but if this were the case, we could construct a weak-* to weak continuous
injection into ac0(Γ) space, and so the compact space would be Eberlein compact [4,18, 23].

We shall formulate here a “linking condition” that relates the separable pieces of a given
Radon-Nikod́ym compact space with the separable pieces of the dual norm ofthe space where
it lives, which will be necessary and sufficient for the Radon-Nikodým compact to be Eberlein
compact. This condition goes back to the transfer techniques developed in [11] for renormings,
and that we have studied in the non metric case in [18].

To formulate our main results we shall need the following:
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Definition 0.1. 1) Let X be a set andτ1, τ2 be two topologies on it. We shall say that X
hasL(τ1, τ2) if for any x ∈ X there exists a countable setS(x) containing x so that if
A ⊂ X thenA

τ2

⊂ ∪{S(x);x ∈ A}
τ1

.
2) Let (X, τ) be a topological space. We shall say that X has the Linking Separability

Property (LSP, for short) if there exists a metric d defined onX, with the metric topology
finer thanτ , such that X hasL(d, τ).

In [18] we studied LSP topological spaces and we shall point out some of their properties
when needed.

Our main results are the following.

Theorem A Let (K, τ) be a compact Hausdorff space. The following are equivalent:

i) K is Eberlein compact.
ii) There exists a lower semi-continuous metric̺ on K such that K hasL(̺, τ).

Theorem BLet K be a Radon-Nikod́ym compact space. Then K is Eberlein compact if, and only
if, K has LSP.

As a corollary of the previous results we obtain the following [7, 19, 22]:

Theorem C Let X be an Asplund generated Banach space, i.e., (there exists an Asplund space E

and a mapT : E → X with T (E)
‖·‖

= X).
Then X is WCG if, and only if(BX∗ , w∗) has LSP.

For further references on this topic we refer the reader to [5], Chapter 8.

1. CHARACTERIZING EBERLEIN COMPACT SPACES.

In this section we shall give the proof of Theorem A. A first step should be to prove that forK
verifying condition ii) in Theorem A,K must be a Corson compact (Th. 1.6). To do so we shall
need some lemmas. Let us begin by setting some notation.

In this paper we will study compact Hausdorff spaces(K, τ) that admit a lower semi-
continuous metric̺ such thatK hasL(̺, τ). We should notice that if this is the case, by a
result of Jayne, Namioka and Rogers in [8], the metric topology must be finer thanτ , which we
will denote byτ � ̺. In the same paper they state the following result which improves a result
by Ghoussoub and Maurey.

Let K be a compact Hausdorff space and let̺ be a bounded lower semi-continuous metric on
K. Then there is a dual Banach spaceE∗ and a homeomorphismϕ : K → E∗ taken with its
weak∗ topology, with

‖ϕ(x) − ϕ(y)‖E∗ = ̺(x, y) for all x, y ∈ K.

The spaceE is the space of all continuous real-valued functionsf onK that satisfy a uniform
Lipschitz condition of order 1 with respect to̺. Then‖f‖Lip is defined to be the least constant
M > 0 such that

|f(z1) − f(z2)| ≤M̺(z1, z2), for all z1, z2 ∈ K,

is a norm onE.
The norm‖ · ‖ onE is defined by‖f‖ = max{‖f‖Lip, ‖f‖∞}.
The mapϕ : K → E∗ is defined as follows. Givenz ∈ K, let ϕ(z) be the linear map

ϕ(z) : E → R in E∗ defined byϕ(z)(f) = f(z). (Soϕ sends a point in the compact space to
its associated Dirac measure inE∗ ⊃ C(K)∗). And we have the following‖ϕ(x) − ϕ(y)‖E∗ =
̺(x, y).

If ̺ is not bounded, we could take a homeomorphismψ : R → (0, 1) and considerd = ψ ◦ ̺
which would be a bounded lower semi-continuous metric onK.
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Lemma 1.1. (Main construction.) Let (K, τ) be a compact Hausdorff space and̺ be a lower
semi-continuous metric on K, such that K hasL(̺, τ). LetA0 ⊂ C(K), M0 ⊂ K, with |A0| =
|M0|. Then there are sets A and M, with the following properties:

i) A0 ⊂ A ⊂ C(K), A is aQ-linear algebra with1 ∈ A, |A| = |A0|.
ii) M0 ⊂M ⊂ K, |M0| = |M |.

iii) A ∩ BE is a norming set for span{ϕ(S(M))} ⊂ E∗ and a norming set for span

{ϕ(M)
σ(E∗,E)

} ⊂ E∗. (WhereS(M) is the set associated to M by the propertyL.)
iv) If x and y are inM , x 6= y there isf ∈ A with f(x) 6= f(y) and for everyf ∈ A there

is ξ(f) ∈M with |f(ξ(f))| = sup{|f(x)|;x ∈ K}.

Proof. We shall constructM andA by an “exhaustion argument” of countable type thanks to
L(̺, τ) we have onK.

Forx ∈ K, S(x) will be the countable set given byL(̺, τ) andS(N) = ∪{S(x);x ∈ N}.
For anyf ∈ C(K), let ξ(f) ∈ K so that|f(ξ(f))| = max{|f(x)|;x ∈ K}.
For any subset ofK,N ⊂ K, define a subset ofE∗ by

Φ(N) = Q − linear span{ϕ(S(N))}.

Fory ∈ Φ(N) consider the countable subset ofE

{fn
y ∈ BE ; ‖y‖E∗ = sup{|fn

y (x)|;n ∈ N}}.

Finally set
Ψ(N) = ∪{fn

y ;n ∈ N, y ∈ Φ(N)}.

ConsiderM0 ⊂ K,A0 ⊂ C(K) and define

A1 = Q − linear algebra generated by{1,Ψ(M0), A0)} ⊂ C(K),

andM1 = M0 ∪ {ξ(f); f ∈ A1}. It is clear that|A1| = |A0|, |M1| = |M0| andA1 ∩ BE is a
norming set for theQ-linear span{ϕ(S(M0))}.

Assume we have defined sequence of setsA0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An andM0 ⊂ M1 ⊂
. . .Mn asA1 andM1 above.

DefineAn+1 = Q− linear algebra generated by{1,Ψ(Mn), An} and the setMn+1 = Mn ∪
{ξ(f); f ∈ An+1}.

TakeA = ∪{An;n ∈ N} andM = ∪{Mn;n ∈ N}. Let us show thatM andA are the sets
we are looking for:

(i) and (ii) are quite clear by construction and since for anypoint x the setS(x) is at most
countable.

By construction,A ∩BE is norming for span{ϕ(S(M))} ⊂ E∗. Thus,A ∩BE norms

spanϕ(S(M))
‖·‖∗

⊂ spanϕ(S(M))
‖·‖∗

.

Now byL(̺, τ), ϕ(M)
w∗

⊂ ϕ(S(M))
‖·‖∗

and that implies thatA∩BE norms span{ϕ(M)}
w∗

.

Let us check iv). Takex, y ∈ M , x 6= y, and assume that for allf ∈ A we hadf(x) = f(y).
Sinceϕ injectsK homeomorphically inE∗, we would haveϕ(x) 6= ϕ(y). Now since they
belong toK = M

τ
, there must be(xn) ∈ S(M) and(yn) ∈ S(M) converging tox andy in ̺

distance byL(̺, τ).
Let us fix n ∈ N. There must bep ∈ N, such thatxn, yn ∈ S(Mp) (sinceS(Mj) is an

increasing sequence), therefore

ϕ(xn) − ϕ(yn) ∈ Q − linear span{ϕ(S(Mp))} ⊂ E∗

whose members are normed inΨ(Mp) ⊂ Ap+1 ⊂ A. The same argument holds for anyn ∈ N

and so we haveϕ(xn) − ϕ(yn) is normed inA ∩BE for anyn ∈ N. Finally we have

̺(xn, yn) = ‖ϕ(xn) − ϕ(yn)‖E∗ = sup{|f(ϕ(xn) − ϕ(yn))|; f ∈ A ∩BE} ≤

≤ sup{|f(ϕ(xn) − ϕ(x)| + |f(ϕ(x) − ϕ(y))| + |f(ϕ(y) − ϕ(yn))|; f ∈ A ∩BE} ≤

≤ ‖ϕ(xn) − ϕ(x)‖E∗ + ‖ϕ(y) − ϕ(yn)‖E∗ = ̺(xn, x) + ̺(yn, y)
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and that implies thatlimn→∞ ̺(xn, yn) = 0 hencex = y wich contradicts the hypothesis.
The second part of iv) is clear by construction.

Lemma 1.2. For sets A and M as in Lemma 1.1, there exists a norm-one projectionP : C(K) →
C(K) with:

i) P (C(K)) = A
‖·‖∞ .

ii) P is an homomorphism of algebras with P(1)=1.
iii) There is a continuous retractionr : K →M such that P(f)=f ◦ r for all f ∈ C(K).
iv) ̺(r(x), r(y)) ≤ ̺(x, y) for all x, y ∈ K.

Proof. Let us considerC(M) with its supremum norm‖| · ‖| and letR be the restriction map
R : C(K) → C(M),R(f) = f|M .

Givenε > 0, andf ∈ A
‖·‖∞ there existsg ∈ A with ‖g − f‖∞ < ε. Let ξ(g) ∈ M with

|g(ξ(g))| = ‖g‖∞. Then we have:

‖f‖∞ ≤ ‖f − g‖∞ + ‖g‖∞ ≤ ε+ |g(ξ(g))| = ‖|Rg‖| + ε ≤

≤ ‖|Rg −Rf‖| + ‖|Rf‖| + ε ≤ ‖|Rf‖| + 2ε

Since the reasoning is valid for everyε > 0 we should have‖f∞‖ ≤ ‖|Rf‖| for all f ∈ A
‖·‖∞

andR is an isometry and algebraic homomorphism betweenA
‖·‖∞ and(C(M), ‖| · ‖|). Since

A separates the points ofM and contains1, R(A
‖·‖∞

) must coincide withC(M) by the Stone-
Weierstrass theorem. Then

R−1 : C(M) → A
‖·‖∞

→֒ C(K)

should be a linear extension operator and the projectionP is defined byP = R−1 ◦ R and it
obviously verifies i) and ii).

iii) follows from a very special case of variants of theoremsof Banach-Stone and Gelfand-
Naimark. Indeed every measureδx for x ∈ K give us a character for the algebraC(K); i.e., a
linear functional multiplicative sending1 to 1, and every character is a Dirac measure. Any al-
gebraic homomorphism and linear isometry between algebrasputs in one-to-one correspondence
the characters of the algebras by the transpose isomorphism. Dealing with the weak∗ topology we
should have consequently, that for everyx ∈ K, δx provides a character for the algebraA which
corresponds with a Dirac measureδr(x) ∈ M . See [21]. This provides us with a continuous
retractionr : K →M andP (f) = f ◦ r sincef ◦ r is continuous onK andf ◦ r|M = f|M .

Let us finish proving iv). Forx andy in K we haver(x) ∈M andr(y) ∈M , so

ϕ(r(x)) − ϕ(r(y)) ∈ span{ϕ(M)
σ(E∗,E)

}

and by iii) in Lemma 1.1 we have

̺(r(x), r(y)) = ‖ϕ(r(x)) − ϕ(r(y))‖E∗ =

= sup
f∈A∩BE

{| < ϕ(r(x)) − ϕ(r(y)), f > |} = sup
f∈A∩BE

{|f(r(x)) − f(r(y))|} =

= sup
f∈A∩BE

{| < f ◦ r, δx − δy > |} = sup
f∈A∩BE

{| < P (f), δx − δy > |} ≤

≤ sup
f∈BE

{| < f, δx − δy > |} = sup
f∈BE

{| < f,ϕ(x) − ϕ(y) > |} =

= ‖ϕ(x) − ϕ(y)‖E∗ = ̺(x, y).

Proposition 1.3. Let(K, τ) a compact Hausdorff space and̺ be a lower semi-continuous metric
on it such that K hasL(̺, τ). Then:

dens(K, τ) = dens(K, ̺) = dens(C(K), ‖ · ‖∞).
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Proof. It is very clear from the definition of the propertyL(̺, τ), that dens(K, τ) =
dens(K, ̺). Sincedens(K, τ) ≤ dens(C(K), ‖ · ‖∞) always holds, we only have to show
thatdens(C(K), ‖ · ‖∞) ≤ dens(K, τ).

Now letM0 = {xα; 0 ≤ α < µ} be a dense subset ofK, whereµ is the first ordinal number
whose cardinality|µ| = dens(K, τ). And letA0 be any subset ofC(K) of the same cardinality
thanM0.

Applying Lemma 1.1 and Lemma 1.2 toA0 andM0, we obtainA ⊃ A0 andM ⊃ M0 with
the properties stated in both results. ButM = K and therefore the restrictionR is the identity.
SoA = C(K) and the density character ofA, and henceC(K), is at most the cardinality ofM0.

The previous Lemmas can be applied to obtain the following:

Theorem 1.4.Let(K, τ) be a compact Hausdorff space and̺ be a lower semi-continuous metric
on it withL(̺, τ).

Then, there exists{Pα;ω0 ≤ α ≤ µ} a PRI onC(K), and a family of continuous retractions
rα : K → K with Pα(f) = f ◦ rα, dens(rα(K)) ≤ |α| and̺(rα(x), rα(y)) ≤ ̺(x, y) for all
x, y ∈ K and for allα ∈ [α, µ].

Moreover,rα → rβ for α→ β pointwise on K in the̺ topology. The latter implies that given
x ∈ K andε > 0, the set

{α;ω0 ≤ α ≤ µ, ̺(rα+1(x), rα(x)) > ε}

is finite. Thus, the set{α;ω0 ≤ α ≤ µ, rα+1(x) 6= rα(x)} is at most countable.

Proof. Let |µ| be the first ordinal number such that|µ| = dens(C(K)) and let{xα; 0 ≤ α < µ}
and{fα; 0 ≤ α < µ} be dense subsets ofK andC(K) respectively.

Let us begin by applying Lemma 1.1 and Lemma 1.2 to the setsA0 = {fα; 0 ≤ α ≤ ω0} and
M0 = {xα; 0 ≤ α ≤ ω0}. We obtainAω0

= A, Mω0
andPω0

with the properties stated in both
Lemmas.

Now let β ≤ µ be any ordinal number and assume that for anyα < β, we have constructed
familiesAω0

⊂ . . . ⊂ Aα of Q-algebras andMω0
⊂ . . . ⊂ Mα ⊂ K, with S(Mα) ⊂ Mα+1 as

well as the corresponding linear projections{Pα;ω0 ≤ α < β} satisfying the conditions in both
Lemmas and|α| = |Mα| = |Aα|.

If β is not a limit ordinal, i.e.,β = α+ 1, set

A0 = Aα ∪ {fα+1} andM0 = S(Mα ∪ {xα+1}).

Apply the Lemmas to these sets to obtainAα+1 andMα+1 satisfying all the conditions required.
If β is a limit ordinal define

Aβ = ∪{Aα+1;ω0 ≤ α < β},Mβ = ∪{Mα+1;ω0 ≤ α < β}.

We shall see now thatAβ andMβ satisfy the conditions in Lemma 1.1.
First let us show thatAβ ∩BE norms span{ϕ(SMβ

)} ⊂ E∗.
Takex ∈ spanϕ(S(Mβ)), thenx is a finite linear combination of points in∪{ϕ(S(Mα+1)) :

ω0 ≤ α < µ}. Hence, by construction, there must beα such thatx ∈ span{ϕ(S(Mα))} which
is normed, by induction hypothesis, byAα ∩BE , which is contained inAβ ∩BE .

Consequently as in the Lemma, we will also have thatAβ∩BE norms span{ϕ(S(Mβ))}
w∗

⊂
E∗. SinceAβ ∩BE norms

spanϕ(S(Mβ))
‖·‖∗

⊂ spanϕ(S(Mβ))
‖·‖∗

.

Now by theL(̺, τ), ϕ(Mβ)
w∗

⊂ ϕ(S(Mβ))
‖·‖∗

and that implies thatAβ ∩ BE norms span

{ϕ(Mβ)}
w∗

.

To prove iv) we essentially have to follow the proof of Lemma 1.1. Takex, y ∈ Mβ , x 6= y,
and assume that for allf ∈ A we hadf(x) = f(y). Then we would haveϕ(x) 6= ϕ(y). Now
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since they belong toKβ = Mβ
τ
, there must be(xn) ∈ S(Mβ) and(yn) ∈ S(Mβ) converging

to x andy in ̺ distance byL(̺, τ).
Let us fixn ∈ N. There must beα(n) < β, such thatxn, yn ∈ S(Mα(n)) (sinceS(Mα) is an

increasing sequence), therefore

ϕ(xn) − ϕ(yn) ∈ Q − linear span{ϕ(S(Mα(n)))} ⊂ E∗

whose members are normed inAα(n) ⊂ Aβ . The same argument holds for anyn ∈ N and so we
haveϕ(xn) − ϕ(yn) are normed inAβ ∩ BE for anyn ∈ N. And, as in the Lemma, we would
getx = y. The second part of iv) in Lemma 1.1 is clear.

Consequently we will have by Lemma 1.2 a projectionPβ , with the range ofPβ equal to

A
‖·‖∞ , and a continuous retraction withrβ(K) = Mβ and dens(rβ(K)) ≤ |β|.
To finish let us show that for eachx ∈ K, rα(x) → rβ(x) in the̺ topology.
SinceS(Mα) ⊂Mα+1 for anyα, we should have that for anyβ limit ordinal,

Mβ
τ
⊂ ∪α<βMα+1

̺
⊂Mβ

β

thereforeMβ
τ

= Mβ
̺
.

Trivially, rα(x) → rβ(x) for anyx ∈ Mβ . Since{rα} are̺-uniformily equicontinuous, and
Mβ

τ
= Mβ

̺
, we haverα(x) → rβ(x) for all x ∈Mβ

τ
.

The following result is in [18].

Remark 1.5. Let (X, τ) be a LSP topological space, then any subspace of X is also LSP.In fact
if d is a metric on X such that X hasL(d, τ) andH ⊂ X then H hasL(d, τ).

Theorem 1.6.Let(K, τ) be a compact Hausdorff space and̺ be a lower semi-continuous metric
on it withL(̺, τ). Then K is a Corson compact.

Proof. We are going to show it by induction on the density character of the compact.
If (K, τ) is separable, by Proposition 1.7, it is metrizable, hence Corson compact.
Now let µ be the first ordinal with cardinality equal to dens(K, τ), and assume that for any

compact space of density character less than|µ| and having LSP for a lower semi-continuous
metric is Corson.

Let {rα : ω0 ≤ α < µ} be the family of retractions onK given by Theorem 1.4.
LetKα = rα(K) ⊂ K. By the construction dens(Kα) ≤ |α|. Since propertyL is hereditary

(Remark 1.5), by the induction hypothesis eachKα is a Corson compact. Hence, for anyα,
ω0 ≤ α < µ there exists a setΓα, and a homeomorphismΨα : Kα → Σ(Γα) ⊂ RΓα .

Let Γ be the disjoint union of the sets{Γα}ω0<α<µ andN, and defineT : K → RΓ by

T (x)(n) = Ψω0
(rω0

(x))(n), n ∈ N

T (x)(γ) = (Ψα+1(rα+1(x))(γ) − Ψα+1(rα(x))(γ)), for γ ∈ Γα+1.

Givenx ∈ K since the set{α; rα+1(x) 6= rα(x)} is at most countable andΨα(rα(x)) lives
in Σ(Γα) for anyα, it clearly follows thatT (x) lives inΣ(Γ).
T is clearly continuous. To see that it is an injection, let us takex, y ∈ K and suppose

T (x) = T (y). Let us show thatrα(x) = rα(y) for all α which would implyx = y.
In particular,Ψω0

(rω0
(x)) = Ψω0

(rω0
(y)), and sinceΨω0

is one-to-one,rω0
(x) = rω0

(y).
So assumerα(x) = rα(y) for all α < β. Sincerα(x) → rβ(x) we would obtainrβ(x) = rβ(y).
(Now x = rµ(x) = rµ(y) = y). (For non limit ordinals is also trivial).

HenceT injects homeomorphically(K, τ) into a sigma product. Thus, K is a Corson compact.

The conditions on the following two propositions are clearly fulfilled if K hasL(̺, τ).

Proposition 1.7. Let(K, τ) be a compact Hausdorff space and̺ a lower semi-continuous metric
onK. If every separable subset ofK is ̺-separable too, then the separable subsets of K are
metrizable.
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Proof. Since the̺ -topology is finer thanτ , the result follows from the fact that any compact
image of a separable metrizable space is metrizable ([3], Theorem 3.1.20).

It is known after Namioka [14], that a compact space is Radon-Nikodým compact if and only
if it is fragmented by a lower semi-continuous metric. Recall that a topological space is said to
be fragmented by a metric if for anyε > 0, and any non-empty subsetA of the space, there exists
a relatively open subset ofA with diameter less thanε.

Proposition 1.8. Let(K, τ) be a compact Hausdorff space and̺ a lower semi-continuous metric
onK. If every separable subset ofK is ̺-separable too, then̺ is a fragmenting metric. Hence,
K is RN compact.

Proof. The result follows immediately from Theorem 4.1, equivalence (c) and (j), in [8],
where one should consider the irreducible mapp.

We can nowprove Theorem A in the introduction:
i)→ii) K is Radon-Nikod́ym (Proposition 1.8) and Corson (Theorem 1.6), so by the mentioned

result in [19, 22], we conclude that K is Eberlein.
ii)→i) We can see(K, τ) as a weakly compact subset of a WCG Banach space E. In [16] we

showed that any WCG Banach space hasL(‖ · ‖, weak), hence by Remark 1.5 so doesK for τ
and‖ · ‖.

2. CONSEQUENCES INBANACH SPACES.

In order to show Theorem B, we need the following definition byJayne, Namioka and Rogers
[9].

Definition 2.1. Let (X, τ) be a topological space andd be a metric onX. We shall say thatX
is σ-fragmented byd if for everyε > 0, it is possible to writeX = ∪∞

n=1X
ε
n, such that for each

n ∈ N and any subsetA ⊂ Xε
n there exists a relativelyτ -open subset ofA with d-diameter less

thanε.

And also the following result from [18].

Remark 2.2. Let (X, τ) have LSP and̺ be any metric on X finer thanτ . If (X, τ) is σ-
fragmented by̺ , then X hasL(̺, τ).

Now let us give theproof of Theorem B:
If K is Eberlein the reasoning in the proof of Theorem A applies. So letK have LSP, i.e.,

there exists a metric onK, sayd, with the metric topology finer thanτ and such thatK has
L(d, τ).

SinceK is Radon-Nikod́ym, there must be a lower semi-continuous metric̺ fragmenting
(K, τ). Apply Remark 2.2 to obtainK hasL(̺, τ), now Theorem A applies to conclude thatK

is Eberlein.

We can also extend Theorem 8.3.4 in [5] giving the Banach space version of the former result,
i.e., Theorem C in the introduction. Theproof of Theorem C is as follows.
T ∗ is one-to-one and gives an homeomorphism between(BX∗ , w∗) and(T ∗(BX∗), w∗).
If X is WCG we know that(BX∗ , w∗) is Eberlein compact and it has LSP.
Conversely, if(BX∗ , w∗) has LSP, since it is Radon-Nikodým compact we have, by Theorem

B, (BX∗ , w∗) is Eberlein. Now Theorem 8.3.4 in [5] applies to giveX is WCG.

3. FINAL REMARKS .

In [18] we studied the relationship between propertyL, σ-fragmentability and propertySLD
of Jayne, Namioka and Rogers. The last property is defined as follows:
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Definition 3.1. We shall say thatX has a countable cover by set of small local diameter (SLD)
if for everyε > 0 it is possible to writeX = ∪∞

n=1X
ε
n, such that for eachn ∈ N every point of

Xε
n has a relativelyτ -neighbourhood ofd-diameter less thanε.

It was shown that when(X, τ) is a metric space and̺ is a metric onX finer thanτ , the
conditions:X hasL(̺, τ), (X, τ) is ̺-σ-fragmented and(X, τ) has̺-SLD, are all equivalent.

Our aim now is to show that this is no longer true whenτ is a non-metrizable topology, i.e.,
we shall give examples of a space with propertyLSP and notSLD, and another withSLD and
notLSP . First, one more property from [18] is needed:

Remark 3.2. Let(X, τ) beσ-fragmented by a metric d finer thanτ (resp. d-SLD). If̺ is another
metric such thatX hasL(̺, τ), then(X, τ) is σ-fragmented by̺ (resp.̺-SLD.)

Example 3.3. Let (K, τ) be a separable non metrizable RN compact, then K does not have
property LSP.

Proof. If there were a metric̺ finer than the topology ofK, with L(̺, τ), since K is RN, i.e.,
fragmented by a lower semi-continuous metric, then by Remark 2.2,K would have propertyL
for this metric too, therefore by Proposition 1.7,K would be metrizable.

The next example is due to A. Moltó, and can be found in [2].

Example 3.4. There exists a compact Hausdorff space(K, τ) and a metric̺ such that(K, τ)
has the̺ -SLD property and it fails to haveL(̺, τ). Moreover,(K, τ) has not the LSP.

Proof. We denote by∆ = {0, 1}N the Cantor set, and byD the set of finite sequences of 0’s
and 1’s. Forσ ∈ D, we denote byIσ the clopen (i.e. closed and open) subset of∆ consisting of
those sequences which start withσ. We consider the following setK0 of functions on∆: the set
K0 contains the characteristic functions of the setsIσ, σ ∈ D (denoted byχIσ

); of the points of
∆, and the function identically equal to zero, denoted byφ.

When eqquiped with the topology of pointwise convergence on∆, K0 becomes a compact
set, which is separable, scattered, nonmetrizable andK

(3)
0 = ∅.

By a result of DevilleC(K)∗ admits an equivalent dual LUR norm, which is equivalent ([20])
to have(C(K)∗, w∗) the‖ · ‖∗-SLD property.

So (K, τ) has̺-SLD for a τ -lower semi-continuous metric, (̺ is the restriction toK of the
dual norm). Now, ifK hadL(̺, τ), by Proposition 1.7,(K, τ) would be metrizable (since it is
separable) which is not true.

To prove the moreover part, we only have to apply Remark 2.2.

So Example 3.4 shows that for a compact space(K, τ) that has̺ -SLD property we may not
have LSP (not onlyL(̺, τ)).

Remark 3.5. In [16] we proved that under CH,ℓ∞ hadL(‖ · ‖, weak) and it has not SLD[10].

The same arguments as in the example above, work for the next result.

Proposition 3.6. Let K be a scattered compact space withK(ω1) = ∅, having separable subsets
which are non-metrizable. Then K has̺-SLD property for a lower semi-continuous metric and
K does not have the LSP.

Example 3.7. (Bℓ∞ , w
∗) is a metrizable compact space, andBℓ∞ has notL(‖ · ‖∞, w

∗).

Proof. It is clear since(ℓ∞, w∗) is separable whereas(ℓ∞, ‖ · ‖∞) is not. (Of course(ℓ∞, w∗)
lacks the‖ · ‖∞-SLD property [9]).



9

REFERENCES

[1] W. J. Davies, T. Figiel, W. B. Johnson and A. Pełcziński, Factoring weakly compact operators, J. Funct. Anal.
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