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ABSTRACT. In this paper we give a sufficient and necessary conditioraf&adon-Niko§im
compact space to be Eberlein compact in terms of a separablefibnecting weak-* and norm
approximation.

INTRODUCTION

A compact topological space is called Eberlein compactig homeomorphic to a weakly
compact subset of some Banach space and it is called Radmai compact if it is homeo-
morphic to a weak-* compact subset of the dual of an AsplurdspBYy the factorization result
of [1], every Eberlein compact space is homeomorphic to &iyemmpact subset of a reflexive
Banach space, therefore an Eberlein compact is a Radord{ik@ompact space. However,
these two classes are different; indeed any scattered airspace is Radon-Nikgth and any
separable, non metrizable scattered compact space camaot Bberlein compact since for the
class of Eberlein compacta, separability and metrizgtalie equivalent properties.

The class of Radon-Nikgan compacta has been investigated by several authors [14915
22] after the systematic study made by I. Namioka in [14] hist paper it is asked:

Problem 4: Find conditions for a Radon-Nikguh compact space to be Eberlein compact.

An answer to this problem was given by [19] and [22] showireg inecessary and sufficient
condition for a Radon-Nikogin compact space to be an Eberlein compact is that it is a @orso
compact. Recall that a compact space is called Corson cdrififtas homeomorphic to a subset
of the 3-product space

Y(T) ={x e [-1,1]" : {y €T : z(y) # 0} is countablé.

It is our aim here to give another necessary and sufficiendition on a Radon-Nikagm
compact space for it to be Eberlein compact.

If a Radon-Nikogm compact lives in a separable dual, it is metrizable and soEberlein
compact. In the non separable case, we know that it lives maaaf an Asplund space where
we can define a projectional resolution of the identity, [Bhese projections are not, in general,
weak-* continuous, but if this were the case, we could caresta weak-* to weak continuous
injection into acy(T") space, and so the compact space would be Eberlein compaé&;, [23].

We shall formulate here a “linking condition” that relatdg tseparable pieces of a given
Radon-Nikogm compact space with the separable pieces of the dual notheafpace where
it lives, which will be necessary and sufficient for the Raddikodym compact to be Eberlein
compact. This condition goes back to the transfer techsigleseloped in [11] for renormings,
and that we have studied in the non metric case in [18].

To formulate our main results we shall need the following:
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Definition 0.1. 1) Let X be a set andy, 7> be two topologies on it. We shall say that X
hasL(r, ) if for any z € X there exists a countable s€tx) containing x so that if
AcC Xthend” c U{S(z);z € A} .
2) Let (X, 1) be a topological space. We shall say that X has the Linkingu&bity
Property (LSP, for short) if there exists a metric d definedowith the metric topology
finer thanr, such that X ha£(d, 7).

In [18] we studied LSP topological spaces and we shall paintsome of their properties
when needed.
Our main results are the following.

Theorem A Let (K, 7) be a compact Hausdorff space. The following are equivalent:

i) Kis Eberlein compact.
ii) There exists a lower semi-continuous metrien K such that K ha€ (o, 7).

Theorem B Let K be a Radon-Nikgem compact space. Then K is Eberlein compact if, and only
if, K has LSP.

As a corollary of the previous results we obtain the follogvji, 19, 22]:

Theorem CLet X be an Asplund generated Banach space, i.e., (thers exisAsplund space E
and a magl’ : E — X with T(E)”‘” = X).
Then X is WCG if, and only {fBx~,w*) has LSP.

For further references on this topic we refer the readerltddbapter 8.

1. CHARACTERIZING EBERLEIN COMPACT SPACES

In this section we shall give the proof of Theorem A. A firsissdould be to prove that fdt
verifying condition ii) in Theorem AKX must be a Corson compact (Th. 1.6). To do so we shall
need some lemmas. Let us begin by setting some notation.

In this paper we will study compact Hausdorff spa¢és, 7) that admit a lower semi-
continuous metrie such thatK hasL(o,7). We should notice that if this is the case, by a
result of Jayne, Namioka and Rogers in [8], the metric togplmust be finer tham, which we
will denote byr < p. In the same paper they state the following result which owes a result
by Ghoussoub and Maurey.

Let K be a compact Hausdorff space andddte a bounded lower semi-continuous metric on
K. Then there is a dual Banach spag& and a homeomorphism : K — E* taken with its
weak* topology, with

le(z) — oW)lle- = o(x,y) forall z,y € K.

The spacé is the space of all continuous real-valued functigren K that satisfy a uniform
Lipschitz condition of order 1 with respect o Then|| f||.;, is defined to be the least constant
M > 0 such that

|f(z1) — f(2z2)] < Mo(z1,22), forall z1, 22 € K,
iSs a horm onk.

The norm|| - || on E'is defined by || = max{|| f||Lip, || oo }-

The mapy : K — E* is defined as follows. Givea € K, let ¢(z) be the linear map
o(z) : E — Rin E* defined byp(2)(f) = f(2). (Soy sends a point in the compact space to
its associated Dirac measureitf D C(K)*). And we have the followindip(z) — ¢(v)| g~ =
o(z,y).

If o is not bounded, we could take a homeomorphismR — (0, 1) and consided = v o o
which would be a bounded lower semi-continuous metridon
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Lemma 1.1. (Main construction.) Let (K, 7) be a compact Hausdorff space apde a lower
semi-continuous metric on K, such that K hi&@, 7). Let Ay € C(K), My C K, with |Ag| =
|My|. Then there are sets A and M, with the following properties:
i) Ap C A C C(K), AisaQ-linear algebrawithl € A, |A| = |Ao].
iy Mo C M C K, |My|=|M|.
i) AN Bg is a norming set for spade(S(M))} C E* and a norming set for span
{@(M)U(E ’E)} C E*. (WhereS(M) is the set associated to M by the propefty
iv) If xandy are inM, x # y there isf € A with f(z) # f(y) and for everyf € A there
is&(f) € Mwith | f(§(f))] = sup{|f(2)|;z € K7}

Proof. We shall construcfi/ and A by an “exhaustion argument” of countable type thanks to
L(p, 7) we have onk..
Forz € K, S(x) will be the countable set given b(p, 7) andS(N) = U{S(z);z € N}.
Foranyf € C(K), leté(f) € K sothat|f(¢(f))| = maxX{|f(z)|;x € K}.
For any subset ok’, N C K, define a subset af* by

O(N) =Q — linear spafip(S(N))}.
Fory € ®(N) consider the countable subsetiof

{fy € Be; llylle- = sup{[f, (z);n € N}}.
Finally set
U(N)=U{f/in €N,y e ®N)}.
ConsiderMy C K, Ay C C(K) and define
A, = Q — linear algebra generated §¥, ¥ (M), Ag)} € C(K),

andM; = My U {g(f),f S Al} It is clear that‘A1| = |A0‘, |M1| = ‘MQ| andA; N Bgisa
norming set for th&-linear spar{x(S(Mpy))}.

Assume we have defined sequence of geisCc A; C A, C ... C A, andMy C M; C
... M, asA; andM; above.

DefineA,,.1 = Q — linear algebra generated Ky, ¥(M,,), A, } and the sef/,, ., = M, U
{6(f); f € Anta).

Take A = U{A,;n € N} andM = U{M,,;n € N}. Let us show thafl/ and A are the sets
we are looking for:

(i) and (ii) are quite clear by construction and since for aojnt = the setS(z) is at most
countable.

By construction A N Bg is norming for spaf(S(M))} C E*. Thus,AN B norms

-1 CWM*.

-1~

Now by L(o, 7), @(M)w C ¢(S(M)) " andthatimplies thaln Bg norms spar{<p(M)}w .
Let us check iv). Take, y € M, x # y, and assume that for afl € A we hadf(z) = f(y).
Sincep injects K homeomorphically inE*, we would havep(x) # (y). Now since they
belong toK = M, there must béz,,) € S(M) and(y,) € S(M) converging tax andy in o
distance byC(o, 7).
Let us fixn € N. There must b € N, such thatz,,y, € S(M,) (sinceS(M,) is an
increasing sequence), therefore

¢(zn) — ¢(yn) € Q — linear spakip(S(M,))} C E*
whose members are normed#{,) C A,+1 C A. The same argument holds for anyc N
and so we have(z,) — ¢(y,) is normed inA N B, for anyn € N. Finally we have

0(@n, yn) = l(zn) — @(yn) e+ = sUp{|f(p(xn) — w(yn))l; f € AN Bg} <

< sup{|f(p(zn) — ()] + [f(e(x) =) + [ f(e(y) —¢(yn))l; f € ANBg} <
< lo(@n) = @@l + le(y) — e(yn)lles = o(®n, ) + 0(Yn,y)

spany(S(M))
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and that implies thaim,, ., o(x,,y.) = 0 hencer = y wich contradicts the hypothesis.
The second part of iv) is clear by construction. ]

Lemma 1.2. For sets A and M as in Lemma 1.1, there exists a norm-one fiojef : C'(K) —
C(K) with:

i) P(C(K)) =4~

if) P is an homomorphism of algebras withlfp¢1.

iii) There is a continuous retraction: KX — M such that P(f)=f o r for all f € C(K).

v) o(r(z),r(y)) < o(x,y) forall z,y € K.
Proof. Let us C(msideC(H) with its supremum nornfj| - ||| and letR be the restriction map
R:C(K) — C(M),R(f) = [z

Givene > 0, andf € Al there existyy € A with ||g — fllec < &. Let&(g) € M with
l9(&(9))| = llgllc- Then we have:

[flloe < I1f = glloo + llglloe <+ 19(5(9))] = II1Rgll| + & <
< |[l[Rg — RFIII + IR + & < [[[RfII] + 2¢

Since the reasoning is valid for every> 0 we should havé f|| < ||| Rf]|| forall f € Al
andR is an isometry and algebraic homomorphism betwdéf™ and(C(M), ||| - |Il). Since

A separates the points 8f and containg, R(Z“'H“) must coincide withC'(M) by the Stone-
Weierstrass theorem. Then

R o) — A= < o)

should be a linear extension operator and the projedtias defined byP = R~! o R and it
obviously verifies i) and ii).

i) follows from a very special case of variants of theoreaiBanach-Stone and Gelfand-
Naimark. Indeed every measuig for © € K give us a character for the algeltd K); i.e., a
linear functional multiplicative sendingjto 1, and every character is a Dirac measure. Any al-
gebraic homomorphism and linear isometry between algglutssn one-to-one correspondence
the characters of the algebras by the transpose isomorpbisaling with the weaktopology we
should have consequently, that for everg K, ¢, provides a character for the algebtavhich
corresponds with a Dirac measuig,) € M. See [21]. This provides us with a continuous
retractionr : K — M andP(f) = f or sincef o r is continuous ork and f o T = f\ﬂ'

Let us finish proving iv). For: andy in K we haver(z) € M andr(y) € M, so

}

o(r(z)) —p(r(y)) € Span{(p(M)a(E*’E)

and by iii) in Lemma 1.1 we have
o(r(x),r(y)) = lle(r(z)) — (r(y))l
= sup {|<e(r(@) —p(r(y), f >} = suwp {[f(r(@) - frw)]} =
NBg fEANBE

Ex =

feEA
= sup {|<fordys—0,>|}= sup {|<P(f),0:—06,>1} <
fEANBE fEANBE
< sup {| < f,0, — 0y > [} = sup {| < f,p(x) —p(y) > |} =
fEBE fE€EBR
= [le(z) — eW)lle- = o(,y).

Proposition 1.3. Let (K, 7) a compact Hausdorff space andbe a lower semi-continuous metric
on it such that K ha€ (o, 7). Then:

dens(K, 1) = dens(K, o) = dens(C(K), || - ||oo)-
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Proof. It is very clear from the definition of the propertg(o,7), that dens(K,7) =
dens(K, p). Sincedens(K,7) < dens(C(K),| - |l) @ways holds, we only have to show
thatdens(C(K), || - ||oo) < dens(K,T).

Now let My = {z,;0 < a < u} be a dense subset &f, wherey is the first ordinal number
whose cardinalityu| = deng K, 7). And let Ay be any subset af’(K') of the same cardinality
thanM,.

Applying Lemma 1.1 and Lemma 1.2 t, and M, we obtainA > Ay andM O M, with
the properties stated in both results. Bit= K and therefore the restrictiaR is the identity.
SoA = C(K) and the density character df and henc€(K), is at most the cardinality af/.

[ |

The previous Lemmas can be applied to obtain the following:

Theorem 1.4. Let(K, 7) be a compact Hausdorff space amtie a lower semi-continuous metric
onitwith L(p, 7).

Then, there exist§P,;wo < a < p} a PRI onC(K), and a family of continuous retractions
ro : K — K with P,(f) = f ora, denst,(K)) < |a] ando(ro(z), 74 (y)) < o(z,y) for all
z,y € K andforalla € [a, pl.

Moreover,r, — rg for « — (3 pointwise on K in the topology. The latter implies that given
x € K ande > 0, the set

{aswo < a <y o(rat1(z),ma(2)) > €}
is finite. Thus, the sdiv; wy < o < p,ro41(x) # ro(x)} is at most countable.

Proof. Let |u| be the first ordinal number such that = dens(C(K)) and let{z,;0 < a < pu}
and{f,;0 < a < u} be dense subsets &f andC(K) respectively.

Let us begin by applying Lemma 1.1 and Lemma 1.2 to the 4gts {f.;0 < a < wp} and
My = {24;0 < o < wp}. We obtainA,,, = A, M,,, andP,,, with the properties stated in both
Lemmas.

Now let 3 < p be any ordinal number and assume that for any. 3, we have constructed
familiesA,, C ... C A, of Q-algebras and/,,, C ... C M, C K, with S(M,,) C M,41 as
well as the corresponding linear projectiofi’,; wy < o < [} satisfying the conditions in both
Lemmas anda| = |M,| = |A4l.

If 3is nota limitordinal, i.e.f = o + 1, set

Ay =AU {fa+1} andM, = S(Ma U {LL’aJrl}).

Apply the Lemmas to these sets to obtdin,; andM,, ., satisfying all the conditions required.
If 3is a limit ordinal define

Ag = U{Aay15w0 < a < B}, Mg = U{Mqyq1;w0 < a < B}

We shall see now thats and M satisfy the conditions in Lemma 1.1.

First let us show thatl; N Bg norms spafiy(Saz, )} C £

Takez € spany(S(Mg)), thenz is a finite linear combination of points in{x(S(Mq11)) :
wo < a < u}. Hence, by construction, there mustdsuch thate € span{x(S(M,))} which
is normed, by induction hypothesis, by, N B, which is contained img N Bg.

*

Consequently as in the Lemma, we will also have thah B norms Spa{]@(S(Mﬁ))}w C
E*. SinceAs N By norms

spany(S(Mp))

Now by theL(¢,7), o(M5)" C @(S(Mp))
{(Mg)}
To prove iv) we essentially have to follow the proof of Lemma.1Takexz, y T #y,

€ Mg,
and assume that for afl € A we hadf(x) = f(y). Then we would have(z) # ¢(y). Now

-1 -1

C spanp(S(Mp))
-1

and that implies thatlz N Bg norms span
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since they belong t&; = My, there must béz,,) € S(Mz) and(y,) € S(Mg) converging
to x andy in o distance byZ(p, 7).

Let us fixn € N. There must bex(n) < 3, such thatr,,, y,, € S(My(,)) (sinceS(M,,) is an
increasing sequence), therefore

P(xn) — (yn) € Q — linear spaip(S(Man)))} C £
whose members are normedAn,,) C Ag. The same argument holds for any= N and so we
havey(z,) — ¢(y,) are normed inldz N Bg for anyn € N. And, as in the Lemma, we would
getx = y. The second part of iv) in Lemma 1.1 is clear.
Consequently we will have by Lemma 1.2 a projectiBgp, with the range ofPs equal to

A"~ and a continuous retraction with (K) = Mg and dengs(K)) < |3
To finish let us show that for eache K, r,(x) — rg(x) in the o topology.
SinceS(M,) C M, for anya, we should have that for anylimit ordinal,

My C Unephloi® € M5
thereforeM = Mj°.

Trivially, ro(z) — rg(z) for anyx € Mgz. Since{r,} arep-uniformily equicontinuous, and
Mj;" = M;z°, we haver, () — rs(z) forall z € Mg . u

The following result is in [18].

Remark 1.5. Let (X, 7) be a LSP topological space, then any subspace of X is alsolh &t
if d is a metric on X such that X ha¥d, 7) and H C X then H has((d, 7).

Theorem 1.6. Let(K, 7) be a compact Hausdorff space amtie a lower semi-continuous metric
on it with £(p, 7). Then K is a Corson compact.

Proof. We are going to show it by induction on the density charadiénecompact.

If (K, 7) is separable, by Proposition 1.7, it is metrizable, henas@ocompact.

Now let i« be the first ordinal with cardinality equal to d€iS ), and assume that for any
compact space of density character less thdarand having LSP for a lower semi-continuous
metric is Corson.

Let{r, : wo < o < u} be the family of retractions o™ given by Theorem 1.4.

Let K, = ro(K) C K. By the construction def&,) < |«|. Since property is hereditary
(Remark 1.5), by the induction hypothesis edch) is a Corson compact. Hence, for any
wo < a < pthere exists a sét,, and a homeomorphism,, : K, — 2(T',) C Rle.

LetT" be the disjoint union of the se{d’, }.,,<a<, andN, and definel" : K — R by

T()(n) = W (1 (@))(n),m € N

T(x)(7) = (Yar1(rat1(2))(7) = Yata(ra(z))(7)), fory € Laqa.

Givenz € K since the sefa; ro4+1(z) # ro(x)} is at most countable anfl,, (7, (x)) lives
in 3(T',,) for any«, it clearly follows thatT'(x) lives in X(T").

T is clearly continuous. To see that it is an injection, let aisetr,y € K and suppose
T(z) = T(y). Let us show that,, (z) = r,(y) for all « which would implyz = y.

In particular, ¥, (ry,(x)) = Py, (re, (v)), and sincel,, is one-to-oner,, (z) = 7, (y).
So assume, (z) = r(y) forall o < 5. Sincer,(z) — rz(z) we would obtainz(z) = rs(y).
(Now z = r,(x) = r,(y) = y). (For non limit ordinals is also trivial).

HenceT injects homeomorphically, 7) into a sigma product. Thus, K is a Corson compact.
[ |

The conditions on the following two propositions are clgduwlfilled if K hasL(p, 7).

Proposition 1.7. Let (K, 7) be a compact Hausdorff space amd lower semi-continuous metric
on K. If every separable subset &f is p-separable too, then the separable subsets of K are
metrizable.
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Proof. Since thep-topology is finer tharr, the result follows from the fact that any compact
image of a separable metrizable space is metrizable ([&ofém 3.1.20). ]

It is known after Namioka [14], that a compact space is Radikedym compact if and only
if it is fragmented by a lower semi-continuous metric. Rett@t a topological space is said to
be fragmented by a metric if for amy> 0, and any non-empty subsétof the space, there exists
a relatively open subset of with diameter less than

Proposition 1.8. Let (K, 7) be a compact Hausdorff space amd lower semi-continuous metric
on K. If every separable subset &f is p-separable too, thepn is a fragmenting metric. Hence,
K'is RN compact.

Proof. The result follows immediately from Theorem 4.1, equivakeric) and (j), in [8],
where one should consider the irreducible map ]

We can nowprove Theorem Ain the introduction:

i)—ii) K is Radon-Nikod/m (Proposition 1.8) and Corson (Theorem 1.6), so by the ioeed
result in [19, 22], we conclude that K is Eberlein.

ii)—i) We can sed K, 7) as a weakly compact subset of a WCG Banach space E. In [16] we
showed that any WCG Banach space & - ||, weak), hence by Remark 1.5 so do&sfor
and| - ||. [ |

2. CONSEQUENCES INBANACH SPACES

In order to show Theorem B, we need the following definitionJayne, Namioka and Rogers

[9].

Definition 2.1. Let (X, 7) be a topological space andlbe a metric onX. We shall say thak’
is o-fragmented by! if for everye > 0, it is possible to writeX = U2 ; X, such that for each

n € N and any subsetl C X¢ there exists a relatively-open subset ofl with d-diameter less
thane.

And also the following result from [18].

Remark 2.2. Let (X, 7) have LSP and be any metric on X finer than. If (X,7) is o-
fragmented by, then X hasC(p, 7).

Now let us give theproof of Theorem B:

If K is Eberlein the reasoning in the proof of Theorem A applies.leés K have LSP, i.e.,
there exists a metric oK, sayd, with the metric topology finer than and such tha#{ has
L(d, ).

Since K is Radon-Nikogm, there must be a lower semi-continuous metritagmenting
(K, 7). Apply Remark 2.2 to obtaif hasL(o, 7), now Theorem A applies to conclude thst
is Eberlein. ]

We can also extend Theorem 8.3.4 in [5] giving the Banachespaxsion of the former result,
i.e., Theorem C in the introduction. Tipeoof of Theorem Cis as follows.

T* is one-to-one and gives an homeomorphism betwébp., w*) and(T* (Bx+), w*).

If X is WCG we know thatBx -, w™*) is Eberlein compact and it has LSP.

Conversely, if( Bx+,w*) has LSP, since it is Radon-Nik@eh compact we have, by Theorem
B, (Bx~,w*) is Eberlein. Now Theorem 8.3.4 in [5] applies to gileis WCG. ]

3. FINAL REMARKS.

In [18] we studied the relationship between propettyr-fragmentability and property LD
of Jayne, Namioka and Rogers. The last property is defineollas/é:
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Definition 3.1. We shall say thakX has a countable cover by set of small local diameter (SLD)
if for everye > 0 it is possible to writeX = U2, X2, such that for eachh € N every point of
X¢ has arelativelyr-neighbourhood ofi-diameter less thaa.

It was shown that wheilX, 7) is a metric space and is a metric onX finer thanr, the
conditions: X hasL(p, 7), (X, 7) is p-o-fragmented andX, 7) hasg-SLD, are all equivalent.

Our aim now is to show that this is no longer true wheis a non-metrizable topology, i.e.,
we shall give examples of a space with propédrtyP and notSL D, and another witty LD and
not LS P. First, one more property from [18] is needed:

Remark 3.2. Let (X, 7) beo-fragmented by a metric d finer than(resp. d-SLD). I is another
metric such thatX hasL(p, ), then(X, 7) is o-fragmented by (resp.o-SLD.)

Example 3.3. Let (K, 7) be a separable non metrizable RN compact, then K does not have
property LSP.

Proof. If there were a metrig finer than the topology ok, with L(g, 7), since K is RN, i.e.,
fragmented by a lower semi-continuous metric, then by Rir&, K would have property
for this metric too, therefore by Proposition 1/ ,would be metrizable. ]

The next example is due to A. Méltand can be found in [2].

Example 3.4. There exists a compact Hausdorff spdé€ ) and a metrico such that(K, 7)
has thep-SLD property and it fails to havé(p, 7). Moreover,(K, 7) has not the LSP.

Proof. We denote byA = {0,1}" the Cantor set, and b® the set of finite sequences of 0's
and 1's. Forr € D, we denote by, the clopen (i.e. closed and open) subsefafonsisting of
those sequences which start withWe consider the following sét’y of functions onA: the set
K contains the characteristic functions of the dgtso € D (denoted byy;_); of the points of
A, and the function identically equal to zero, denotedby

When eqquiped with the topology of pointwise convergence\oriy becomes a compact
set, which is separable, scattered, nonmetrizable?ééaia: 0.

By a result of DevilleC'(K)* admits an equivalent dual LUR norm, which is equivalent[20
to have(C(K)*,w*) the|| - ||*-SLD property.

So (K, 1) hasp-SLD for ar-lower semi-continuous metricg (s the restriction taK of the
dual norm). Now, ifK hadL(p, 7), by Proposition 1.7(K, 7) would be metrizable (since it is
separable) which is not true.

To prove the moreover part, we only have to apply Remark 2.2. ]

So Example 3.4 shows that for a compact spd€er) that hase-SLD property we may not
have LSP (not onlyZ(p, 7)).

Remark 3.5. In [16] we proved that under CH™ had £(|| - ||, weak) and it has not SL10].
The same arguments as in the example above, work for the emxt.r

Proposition 3.6. Let K be a scattered compact space wigk*1) = (), having separable subsets
which are non-metrizable. Then K hasSLD property for a lower semi-continuous metric and
K does not have the LSP.

Example 3.7. (B, w*) is a metrizable compact space, aBg~ has notL(|| - ||oo, w*).

Proof. Itis clear since((>°, w*) is separable wheredé>, || - ||».) is not. (Of course¢>, w*)
lacks the|| - ||o-SLD property [9]).
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